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Abstract—Civl is a static verifier for concurrent programs
designed around the conceptual framework of layered refinement,
which views the task of verifying a program as a sequence of
program simplification steps each justified by its own invariant.
Civl verifies a layered concurrent program that compactly
expresses all the programs in this sequence and the supporting
invariants. This paper presents the design and implementation
of the Civl verifier.

I. INTRODUCTION

Correctness of critical specifications of concurrent systems
rests upon invariants about the global system state. The
classical approach to static verification is to represent the en-
tire organizational structure—processes, threads, procedures,
looping, branching, sequencing—of a concurrent system as a
flat transition relation that encodes its operational semantics.
Further reasoning is performed on this transition relation.
This approach leads to massively complex invariants that are
hard to specify for the programmer and difficult to verify via
automated tools.

a: x := n

b:
c:
d:
e:

acquire(l)
t1 := x
x := t1 + 1
release(l)

acquire(l)
t2 := x
x := t2 + 1
release(l)

f : assert x = n+ 2

Fig. 1. Parallel increment (version 0).

We motivate our work using the program in Figure 1. This
program starts with a single thread that initializes a global
variable x to a constant n, creates two threads that run in
parallel each incrementing x by 1 while holding the lock l,
waits for the two threads to finish, and then asserts that x =
n + 2. The goal of verification is to prove this assertion for
all values of n and all executions of the program.

The classical approach to verification of concurrent pro-
grams models the verification problem in Figure 1 as a transi-
tion system shown in Figure 2, comprising an initial predicate
Init , a transition predicate Next , and a safety predicate Safe .
To prove that all reachable states of the transition system
satisfy the predicate Safe , an inductive invariant Inv must
be invented such that Init ⇒ Inv , Inv ∧ Next ⇒ Inv ′, and
Inv ⇒ Safe .

This research was performed while Bernhard Kragl was at IST Austria,
supported in part by the Austrian Science Fund (FWF) under grant Z211-N23
(Wittgenstein Award).

Init : pc = pc1 = pc2 = a

Next :
pc = a ∧ pc′ = pc1 = pc2 = b ∧ x′ = n ∧ eq(l, t1, t2)

∨ pc1 = b ∧ pc′1 = c ∧ l = # ∧ l′ = ① ∧ eq(pc, pc2, x, t1, t2)
∨ pc1 = c ∧ pc′1 = d ∧ t′1 = x ∧ eq(pc, pc2, l, x, t2)
∨ pc1 = d ∧ pc′1 = e ∧ x′ = t1 + 1 ∧ eq(pc, pc2, l, t1, t2)
∨ pc1 = e ∧ pc′1 = f ∧ l′ = # ∧ eq(pc, pc2, x, t1, t2)
∨ pc2 = b ∧ pc′2 = c ∧ l = # ∧ l′ = ② ∧ eq(pc, pc1, x, t1, t2)
∨ pc2 = c ∧ pc′2 = d ∧ t′2 = x ∧ eq(pc, pc1, l, x, t1)
∨ pc2 = d ∧ pc′2 = e ∧ x′ = t2 + 1 ∧ eq(pc, pc1, l, t1, t2)
∨ pc2 = e ∧ pc′2 = f ∧ l′ = # ∧ eq(pc, pc1, x, t1, t2)
∨ pc1 = pc2 = f ∧ pc′ = f ∧ eq(pc1, pc2, l, x, t1, t2)

Safe: (pc = f ⇒ x = n+ 2) ∧
(pc1 ∈ {c, d, e} ⇒ l = ①) ∧ (pc2 ∈ {c, d, e} ⇒ l = ②)

Fig. 2. Transition relation of the program in Figure 1. The lock l can be either
available (value #), or held by the first or second thread (values ① and ②).
The predicate eq denotes unmodified variables, e.g., eq(l) means l′ = l.

This approach is clearly problematic for several reasons.
First, the encoding as a transition system flattens and elim-
inates the syntactic structure of the program. Forcing the
programmer to think about the inductive invariant at the level
of this encoding significantly reduces productivity. Second,
the inductive invariant is likely to have as much case anal-
ysis as the encoded transition relation, making it even more
tedious and unproductive for the programmer to specify it. For
example, the inductive invariant for our example program is
larger than its transition relation. This trivial parallel increment
program is just the tip of the iceberg; the task of specification
and verification explodes in complexity if we turn our attention
to realistic implementations of large concurrent systems.

There are two broad approaches to the problem of inductive
invariants for concurrent systems. One approach is automatic
generation of inductive invariants [1], [2], [3] eliminating the
need to specify them manually. Another approach is to specify
them via annotations on the structured program itself [4], [5]
reducing the cognitive burden on the programmer. Civl falls
into this latter class of techniques; its contribution is to allow
more proofs to be expressed on the structured program.

Civl proposes an alternative proof strategy which encour-
ages the programmer to think in terms of a sequence of pro-
gram versions that increasingly simplify the original program.
Denoting the program in Figure 1 as version 0, we show three
progressively simpler versions in Figure 3.

The simplification from version 0 to version 1 is based on
mover types [6], [7]. Acquiring of lock l is a right mover,
release of lock l is a left mover, and accesses to the shared
variable x protected by the lock l are left and right movers.
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version 1
x := n

atomic {
acquire(l)
t1 := x
x := t1+1
release(l)

}

atomic {
acquire(l)
t2 := x
x := t2+1
release(l)

}

assert x = n+ 2

version 2
x := n

x := x+1 ∥ x := x+1

assert x = n+ 2

version 3
x := n
x := x+ 1
x := x+ 1
assert x = n+ 2

Fig. 3. Simplifying parallel increment.

Consequently, the code fragment executed by each child thread
can be treated as an atomic block which executes in one step.

The simplification from version 1 to version 2 summarizes
each atomic block with an atomic increment of x, while
hiding global variable l and local variables t1 and t2. This
summarization is possible because each atomic block leaves
the value of l unchanged.

Finally, the simplification from version 2 to version 3
applies mover types again. Since each atomic increment is
both a left and right mover, the two parallel increments can be
converted into a sequence of two increments. Version 3 can
be verified trivially by constructing a sequential verification
condition and using an SMT solver to discharge it.

There are several advantages of the Civl approach. First,
the transition relation of the program is never exposed to the
programmer who specifies program versions using the familiar
syntax of structured concurrent programs. Second, although an
invariant may be needed to justify a program transformation in
general, each invariant is simpler because it justifies only one
transformation. Finally, invariants, even when they are needed,
are supplied by annotating the structured program itself.

Section II presents a high-level overview of layered re-
finement, the collection of techniques underlying the Civl
approach. Taken together, these techniques increase proof pro-
ductivity by allowing the correctness argument to be expressed
as a single layered concurrent program [8]. This section is
targeted to an expert in the theory of concurrency verification
and may be skipped on a first reading of the paper. Section III
presents the modeling and specification features available to a
Civl user through concrete examples.

Since the first published description of Civl [9], we have
reimplemented the verifier completely. Section IV describes
the current architecture of the Civl implementation as a
conservative extension of the Boogie verifier.

The main contribution of Civl is a methodology supported
by automated reasoning for implementing verified concurrent
systems. We present two arguments that Civl improves the
state of the art in constructing verified programs. First, Civl
clearly allows new proofs of concurrent systems to be ex-
pressed. Second, these proofs have been accomplished on
many programs by many researchers including several who
were not involved in the design and implementation of Civl.
Section V presents this accumulated experience.

II. LAYERED REFINEMENT

Civl advocates layered refinement over structured concur-
rent programs. Instead of proving the safety of a program in
one shot, the new approach allows the programmer to specify
a chain of increasingly simpler programs starting from the
original program. Each link of the chain, from program P
to program Q, represents a single simplification that may be
viewed as an abstraction from P to Q or a refinement from Q
to P. The correctness of the program is established piecemeal
by focusing on the simpler invariant required for each refine-
ment step separately. Most importantly, all the layers and the
supporting invariants are specified as a structured and layered
concurrent program [8], thus hiding the low-level transition
relation from the programmer.

Layered concurrent programs introduce a succinct presenta-
tion for multi-layer refinement proofs, which offer two major
advantages for interactive proof construction. First, through a
syntax for expressing “data layering” (i.e., which variables live
on which layers) and “control layering” (i.e., which operations
live on which layers), it is easy for the user to write, refine,
and maintain a proof outline. Second, a layered concurrent
program expresses only the changes in the program from one
layer to the next. Thus, layered concurrent programs can result
in much smaller proofs, especially for large programs.

While traditional approaches view refinement as a mecha-
nism to specify behavior of concurrent programs, Civl views
refinement as a tactic to simplify verification of safety prop-
erties. Consequently, the simulation relation justifying the
refinement step in Civl is computed but never revealed to the
programmer who focuses only on the program layers and the
connecting invariants. The viability of the layered refinement
approach depends on the existence of program simplification
tactics that are easy to use by the programmer and whose
justification can be checked automatically. Civl incorporates a
number of such tactics described below.
Creating atomic blocks. The Civl programming model com-
prises concurrently-executing and dynamically-created tasks
operating over global memory, each access to which must be
encapsulated inside an indivisible atomic action. Global vari-
ables model either shared memory or communication channels.
Civl uses a theory of commutative atomic actions [6], [7] to
create sequential code blocks that appear to execute atomically,
despite accesses to global state by multiple atomic actions in
the code block.
Creating atomic actions. An atomic code block might be
internally complex, due to sequencing, branching, looping,
and recursion. Civl summarizes such a code block with an
atomic action that hides all the internal details in favor of a
declarative specification. Thus, atomic actions in Civl are used
to model both low-level execution primitives and high-level
summary specifications. To support such diverse usage, an
atomic action in Civl generalizes a guarded command [10] to
include a specification of failure [11] (in addition to blocking
or successful execution) and the creation of asynchronous
activity in the form of pending asyncs [12].



Synchronizing asynchrony. Civl supports elimination of pend-
ing asyncs from the atomic actions in a program via a tactic
known as inductive sequentialization [13]. Introduction and
elimination of pending asyncs in atomic actions together
enable a program simplification that provides the appearance
of executing in one step a collection of atomic computations
executing asynchronously. This tactic amplifies the use of
commutative atomic actions to allow summarization of both
synchronous and asynchronous computation.

Civl allows introduction and hiding of global and local
variables to change the state representation of the program.
This change often results in a program whose atomic actions
become commutative and thus the other tactics mentioned
above become applicable. Variable introduction is performed
as part of the tactic that creates atomic blocks; calls to special
atomic actions assign meaning to the introduced variables.
Variable hiding is performed as part of the tactic that creates
atomic actions from atomic blocks; the created atomic action
does not refer to the hidden variables.

Variable introduction and hiding in Civl has two other
benefits. First, variable introduction naturally allows the user
to introduce an arbitrary safety specification for the program.
Second, it becomes unnecessary to support the notion of ghost
state present in most provers for concurrent programs. Chang-
ing the state representation of the program often addresses the
need for ghost state. Also, a variable may be introduced and
hidden at the same layer for those special cases when ghost
state is needed purely for invariant specification.

The tactic that creates atomic actions often needs constraints
on the reachable states of the program. These constraints are
supplied via yield invariants [14] which are named and param-
eterized invariants that can be reused and suitably instantiated
across multiple program locations where interference may
happen. Yield invariants combine the precision and flexibility
of location invariants [4] with the compactness and modu-
larity of rely-guarantee specifications [5]. Civl supports local
reasoning with permissions that are redistributed by atomic
actions and otherwise passed around the program without
duplication [14]. Permissions are useful in proving locally
both that yield invariants are interference-free and that atomic
actions satisfy desired commutativity properties.

Civl supports the verification of arbitrary safety properties.
Civl’s notion of correctness is that the lowest-layer program
is free of assertion failures. Arbitrary safety properties are
expressible as assertions because auxiliary state (e.g., history
variables) can be introduced into the program in addition to
program state.

The client of a system constructed with layered refinement
only needs to check that the established high-level specifi-
cation captures the desired property. The details of a layered
proof are not trusted since they are checked by Civl. However,
the introduction of auxiliary state into the system at the lowest
layer, sometimes needed to express a specification, is trusted.

III. PROGRAMMING AND PROVING IN CIVL

In this section we illustrate the input language and the
verification features of Civl. The presentation is necessarily
brief and selective. Detailed documentation is available at our
website civl-verifier.github.io.
Syntax. Civl is built on top of Boogie [15], a language and
verifier for sequential programs. Boogie provides standard
features for imperative programming such as assignments,
sequencing, branching, looping, and procedures. Additionally,
it provides specification features such as assert and assume
statements, loop invariants, preconditions, postconditions, and
axioms. The expression language of Boogie is first-order
logic with built-in theories such as uninterpreted functions,
integers, bitvectors, datatypes, and arrays. Civl adds the key-
words async (asynchronous procedure call), par (parallel
procedure call), and yield (yield point) to express concurrent
behaviors. All other syntactic extensions are implemented
using generic attributes which attach to abstract syntax tree
nodes of a Boogie program. Attributes are of the form
{:attr e1, e2, ...}, where attr is the attribute name
and e1, e2, ... are parameter expressions of the attribute.
Atomic actions. Every access to a global variable has to
be encapsulated into an atomic action. An atomic action
consists of a gate, a one-state predicate that specifies the
condition under which the action can execute or otherwise fail,
and a transition relation, a two-state predicate that specifies
the possible state updates of the action. Atomic actions are
capable of specifying uniformly both low-level operations (like
writing to a memory location or sending a message on a
channel) and high-level operations (like acquiring a lock or
reaching consensus in a distributed system). For example,
the left column in Figure 4 shows atomic actions which
acquire and release a lock, modeled by the global variable
l. The Boogie procedures are identified as atomic actions
by the :right/:left annotations which also declare their
mover types; actions that are non-movers are annotated with
:atomic. The action AcquireSpec blocks until l equals
None() (denoting the availability of the lock) and then updates
l to Some(tid) (denoting that the lock is held by the current
thread with thread id tid). Conversely, ReleaseSpec asserts
that the current thread holds the lock (the assert statement
specifies the gate) and updates l to None().
Program layers. In a Civl proof, the user explicitly organizes
the program into layers using layer annotations. Variables and
atomic actions have a layer range. In Figure 4, variable l

is introduced at layer 1 and hidden at layer 2, and action
AcquireSpec only exists at layer 2.

Concurrent computations are expressed by yielding proce-
dures. The yielding procedure Acquire in Figure 4 acquires a
lock by repeatedly invoking the compare-and-swap operation
CAS_b to atomically set the global Boolean variable b from
false to true. A yielding procedure is subject to interference
from other concurrent threads at any point during its execution.
However, Acquire is declared to refine the atomic action
AcquireSpec at layer 1. This means that Civl checks that

https://civl-verifier.github.io


var {:layer 1,2} l: Option Tid;

procedure {:right} {:layer 2,2}
AcquireSpec({:linear "tid"} tid: Tid)
modifies l;
{
assume l == None();
l := Some(tid);

}

procedure {:left} {:layer 2,2}
ReleaseSpec({:linear "tid"} tid: Tid)
modifies l;
{
assert l == Some(tid);
l := None();

}

var {:layer 0,1} b: bool;

procedure {:yields} {:layer 1}
{:refines "AcquireSpec"}
{:yield_preserves "LockInv"}

Acquire({:layer 1}{:linear "tid"} tid: Tid)
{

var t: bool;

while (true)
invariant {:layer 1}{:yields}
{:yield_loop "LockInv"} true;

{
call t := CAS_b(false, true);
if (t) {

call set_l(Some(tid));
break;

}
}

}

procedure {:intro} {:layer 1}
set_l(v: Option Tid)
modifies l;
{ l := v; }

procedure {:yields} {:layer 2}
{:refines "ClientSpec"}
{:yield_preserves "LockInv"}

Client({:layer 1,2} {:hide}
{:linear "tid"} tid: Tid)

{
call Acquire(tid);
...
call Release(tid);

}

procedure {:atomic} {:layer 3,3}
ClientSpec()
{ ... }

Fig. 4. A layered program, showing a lock implementation and its client. Left: Atomic actions for acquiring and releasing a lock. Middle: A spinlock
implementation that refines the atomic action specification. Right: Introduction action for proving the lock refinement and a client of the lock.

Acquire “behaves like” AcquireSpec, and thus clients of
the former can ignore the details of its implementation and
instead reason with the atomic behavior of the latter. Acquire
uses the global Boolean variable b, while AcquireSpec uses
the global lock variable l. The connection between these
two different representations is established by the introduction
action set_l, which sets l from None() to Some(tid) when
b is set from false to true. Finally, the yielding procedure
Client protects a critical section with calls to Acquire and
Release and declares that it refines the action ClientSpec

at layer 2.
The layer annotation of a yielding procedure denotes its

disappearing layer. The procedure exists (with changing bod-
ies) on all layers below and up to its disappearing layer. For
example, Acquire exists on layer 0 and 1, and Client exists
on layer 0, 1, and 2. Intuitively, a procedure is replaced with
its refined atomic action above its disappearing layer.

Figure 4 encodes four program layers. Layer 0 is the most
concrete program. It contains procedure Client which calls
procedure Acquire, and Acquire implements a spinlock
using calls to CAS_b; b is the only global variable, and Client
and Acquire have no input parameters. Layer 1 introduces the
global variable l and the local input parameters tid, along
with the introduction action set_l (the call to set_l does
not exist at layer 0). At layer 2, Acquire is gone and the
body of Client is rewritten to make calls to the actions
AcquireSpec and ReleaseSpec; b is hidden and l is the
only global variable. At layer 3, Client is also gone, and any
potential calls to Client are replaced by its atomic summary
ClientSpec; global variable l and the parameter tid do not
exist anymore.

Layering provides a form of modularity. At layer 2 we do
not care about how the lock is implemented, and at layer 3
we do not care that a lock was used at all. The applied
proof tactics (variable introduction, variable hiding, and atomic
blocks) simplify the necessary invariants on every layer.
Yield sufficiency. Civl partitions the bodies of yielding
procedures into yield-to-yield fragments. The following code
locations are yield points: procedure entry and exit, loop head-

ers annotated with {:yields}, and explicit yield statements.
Context switches are only considered at yield points, and the
code between two yield points is a yield-to-yield fragment. At
layer 1, in Acquire every loop iteration (i.e., call to CAS_b) is
a yield-to-yield fragment, and in Client there is a yield before
and after every call. At layer 2, something interesting happens.
The body of Client does not call any procedures anymore
(the calls are to atomic actions now), and thus Client

has only a single yield-to-yield fragment. Civl justifies this
simplification using reduction [6], [7]. Concretely, using the
fact that AcquireSpec is a right mover and ReleaseSpec

is a left mover. In general, every yield-to-yield fragment is
checked to be a sequence of right movers, followed by at
most one non-mover, followed by a sequence of left movers.
Refinement. To justify the summarization of a yielding pro-
cedure at layer n by an atomic action, Civl checks that in
every execution of the procedure, the effect of the refined
action happens in exactly one yield-to-yield fragment and
that other yield-to-yield fragments leave the layer-(n + 1)
state unchanged. In Acquire, every loop iteration where
CAS_b fails leaves l unchanged, while the (final) iteration
where CAS_b succeeds also updates l to Some(tid) and thus
produces the effect of AcquireSpec.
Invariants. Civl performs refinement checking modularly,
by considering every yield-to-yield fragment in isolation.
This usually requires certain properties to hold at yield
points, notwithstanding any interference from other concurrent
threads. Civl supports location invariants [4] and yield invari-
ants [14], which are checked to be interference-free across
all yield-to-yield fragments in the program. Yield invariants
are named and parameterized invariants that can be reused
and suitably instantiated across multiple yield points. The
following code shows the yield invariant LockInv.
procedure {:yield_invariant} {:layer 1} LockInv();
requires b <==> (l != None());

In Acquire (Figure 4), LockInv is attached to the procedure
entry and exit using the :yield_preserves annotation, and
to the loop header using the :yield_loop annotation. We
give examples of parameterized yield invariants below.



Permissions. Certain invariants, like those connecting local
variables from different scopes, can be tedious to express
and propagate. Civl addresses this problem using linear per-
missions. Program variables can be declared as linear, from
which Civl calculates the available variables at every control
location, assigns every available variable a set of permissions,
and ensures that there is no duplication across these permission
sets. Civl allows the user to customize the type of permissions
and the assignment of permissions to variables.

The lock specification in Figure 4 uses linearity to express
unique thread identifiers. The type declaration
type {:linear "tid"} Tid;

specifies the permissions for the linear domain tid to be of
type Tid, the type of thread identifiers. This means that every
variable that is linear under domain tid gets assigned a set
of Tid values. The assignment is specified using collector
functions. Civl uses the following default collector in the
absence of a user-specified collector.
function {:linear "tid"} TidCol(x: Tid) : [Tid]bool
{ MapConst(false)[x := true] }

We use a map from Tid to bool to model a set. The
polymorphic map constructor MapConst applied to false

returns a map set to false everywhere representing an empty
set. TidCol assigns linear variables of type Tid (like the
input parameter tid of AcquireSpec and ReleaseSpec)
the single value the variable contains as its permission.
Consider an instance of AcquireSpec and an instance of
ReleaseSpec with parameters tid1 and tid2, respec-
tively. By linearity, Civl gets to assume that the multiset
TidCol(tid1) ⊎ TidCol(tid2) = {tid1, tid2} does not contain
any duplicates, which implies tid1 ̸= tid2. This assumption
is used to show that the AcquireSpec instance commutes to
the right of the ReleaseSpec instance, an important part of
the proof that AcquireSpec and ReleaseSpec satisfy their
mover types.

Figure 5 presents an example inspired by barrier syn-
chronization to demonstrate how permissions are useful in
proving invariants. The program has two global variables,
barrier and count, to represent the set of identifiers
inside the barrier and the number of threads outside the
barrier, respectively. The atomic actions EnterBarrier and
ExitBarrier encode entering and exiting the barrier by
a thread, respectively. The yield invariant ThreadInv is
parameterized by a thread identifier j and indicates that j

is in the barrier. Typically, a thread with identifier i would
enter the barrier by calling EnterBarrier(i), yield to other
threads by calling ThreadInv(i), and then exit the barrier
by calling ExitBarrier(i). The linearity of parameter j of
ThreadInv and parameter i of ExitBarrier allows us to
assume that j and i are distinct, and therefore ThreadInv is
preserved by ExitBarrier. Preservation by EnterBarrier

is trivial since this action only adds elements to barrier.
Permission redistribution. Now consider the following yield
invariant BarrierInv that indicates that the sum of the size of
barrier and count is equal to N, the total number of threads.

var {:layer 0,1} barrier: [Tid]bool;
var {:layer 0,1} count: int;

procedure {:atomic} {:layer 1} EnterBarrier(
{:linear "tid"} i: Tid)

modifies barrier;
{

barrier[i] := true;
count := count - 1;

}

procedure {:atomic} {:layer 1} ExitBarrier(
{:linear "tid"} i: Tid)

modifies barrier;
{

assert barrier[i];
barrier[i] := false;
count := count + 1;

}

procedure {:yield_invariant} {:layer 1} ThreadInv(
{:linear "tid"} j: Tid);

requires barrier[j];

Fig. 5. Using permissions to prove invariants.

procedure {:yield_invariant} {:layer 1} BarrierInv();
requires Size(barrier) + count == N;

This invariant cannot be proved on the code in Figure 5.
The action EnterBarrier does not preserve BarrierInv

whenever barrier[i] already holds upon entry. This condi-
tion, of course, cannot happen in the program, since a thread
only calls EnterBarrier when it is outside the barrier. But
this constraint is not encoded in the current specification. An
attempt to encode this constraint would be to make the global
variable barrier linear. However, this strategy would force us
to drop the linear annotation on parameter i of ExitBarrier
which would then make ThreadInv unprovable.

To solve this programming problem, we present a more
sophisticated use of permissions that depends on custom
collectors and new linearity annotations on local variables. The
datatype declaration
type {:linear "perm"} {:datatype} Perm;
function {:constructor} Left(i: Tid): Perm;
function {:constructor} Right(i: Tid): Perm;

specifies the permissions for a new linear domain perm. The
datatype Perm has two constructors Left and Right; each
constructor wraps a thread identifier to create a Perm value.
The collectors for perm are shown below.
function {:linear "perm"} TidCol(x: Tid) : [Perm]bool
{ MapConst(false)[Left(x) := true][Right(x) := true] }

function {:linear "perm"} TidSetCol(xs: [Tid]bool)
: [Perm]bool
{ (lambda p: Perm :: is#Left(p) && xs[i#Left(p)]) }

The collector TidCol defines the permissions stored in a
single thread identifier x as the set comprising Left(x) and
Right(x). The collector TidSetCol collects the permissions
in a set of thread identifiers xs by collecting Left(x) for each
element x in xs. Additionally, there is the following default
collector for type Perm.
function {:linear "perm"} PermCol(x: Perm) : [Perm]bool
{ MapConst(false)[x := true] }

Figure 6 shows the revised code for our example which
now uses the linear domain perm throughout. The global



var {:layer 0,1} {:linear "perm"} barrier: [Tid]bool;
var {:layer 0,1} count: int;

procedure {:atomic} {:layer 1} EnterBarrier(
{:linear_in "perm"} i: Tid)

returns ({:linear "perm"} p: Perm)
modifies barrier;
{

barrier[i] := true;
count := count - 1;
p := Right(i);

}

procedure {:atomic} {:layer 1} ExitBarrier(
{:linear_in "perm"} p: Perm, {:linear_out "perm"} i: Tid)

modifies barrier;
{

assert p == Right(i) && barrier[i];
barrier[i] := false;
count := count + 1;

}

procedure {:yield_invariant} {:layer 1} ThreadInv(
{:linear "perm"} p: Perm, j: Tid);

requires p == Right(j) && barrier[j];

Fig. 6. Permission redistribution in atomic actions.

variable barrier is linear and consequently a store of permis-
sions. The signatures and implementation of EnterBarrier,
ExitBarrier, and ThreadInv have also changed.

We now present the intuition behind the revised
implementation. EnterBarrier splits the permissions
{Left(i), Right(i)} contained in its input parameter i

into Left(i) which is put into barrier and Right(i)

which is returned via the output parameter p. The linear_in
annotation on i indicates that the permissions in i are
consumed by the call and are therefore unavailable afterwards.
The permission p and the unavailable thread identifier i are
used to call ThreadInv. Finally, when ExitBarrier is called
with p and i and i is removed from barrier, the permission
Left(i) is also removed from barrier. This permission
becomes available to be joined with Right(i) contained
in p so that the full permission set {Left(i), Right(i)}

is put into i which becomes available after the call. This
protocol is indicated by the linear_in annotation on p and
the linear_out annotation on i.

This example shows that permissions can be redistributed
without duplication by an atomic action among global vari-
ables and its parameters. This ability to soundly redistribute
permissions allows us to compactly express and prove coordi-
nation protocols.
Asynchrony. Asynchronous invocations—calls that create a
new concurrent thread of computation without the caller wait-
ing for the operation to complete—are challenging to specify
and verify. Civl provides the inductive sequentialization [13]
proof rule to sidestep the arduous task of inventing complex
inductive invariants that capture all possible interleavings of
an asynchronous program.

Consider the action ASYNC_SUM in Figure 7. It uses an out-
put variable PAs that represents pending asyncs, asynchronous
operations that are spawned by ASYNC_SUM but executed
asynchronously at some later time. Concretely, ASYNC_SUM
creates the multiset of pending asyncs set_of_ADD(1, n) =
{ADD(1), ADD(2), . . . , ADD(n)}, which could be refined to a

procedure {:atomic}{:layer 1}{:IS "SUM","INV"}{:elim "ADD"}
ASYNC_SUM (n: int)
returns ({:pending_async "ADD"} PAs:[PA]int)
modifies x;
{
assert n >= 0;
PAs := set_of_ADD(1, n);

}

procedure {:atomic}{:layer 2} SUM (n: int)
modifies x;
{
assert n >= 0;
x := x + (n * (n+1)) div 2;

}

procedure {:left}{:layer 1} ADD (i: int)
modifies x;
{ x := x + i; }

procedure {:IS_invariant}{:layer 1} INV (n: int)
returns ({:pending_async "ADD"} PAs:[PA]int,

{:choice} choice:PA)
modifies x;
{
var i: int;
assert n >= 0;
assume 0 <= i && i <= n;
x := x + (i * (i+1)) div 2;
PAs := set_of_ADD(i+1, n);
choice := ADD(i+1);

}

Fig. 7. Sequentialization of the asynchronously computed sum from 1 to n.
We are omitting annotations that support automated reasoning with quantifiers.

procedure that asynchronously invokes ADD in a while loop.
The annotations on ASYNC_SUM tell Civl instead to convert

it into SUM, by eliminating from it the pending asyncs to
ADD using the invariant action INV. SUM adds to x the value
n(n+1)

2
, which is the cumulative effect of the asynchronous

ADD operations. The key is that INV only talks about a single
interleaving of the ADD operations: ADD(1); ADD(2); . . . ;
ADD(n). It represents any prefix of this single interleaving
as follows. It (1) nondeterministically picks i between 0 and
n denoting the number of finished ADD’s, (2) increases x by
i(i+1)

2
to capture the effect of executing ADD(1) to ADD(i),

(3) creates pending asyncs for ADD(i+1) to ADD(n), and
(4) specifies that the next pending async we wish to execute in
our sequential order is ADD(i+1). INV represents ASYNC_SUM
with i = 0, SUM with i = n, and the induction order from i

to i+1 is specified by the user through the output variable
choice. The justification for this sequential reduction is that
ADD is a left mover, and thus can always be commuted to the
desired location in the sequentialization.

IV. IMPLEMENTATION

Civl is implemented as a conservative extension of the
Boogie verifier. The extensions to the syntax (Section III) and
the verification engine do not affect ordinary Boogie programs.
The Boogie verifier itself is implemented as a pipeline with
a sequence of phases—parsing, type checking, verification
condition generation, solver invocation, and error reporting.
For every procedure, a verification condition in SMT-LIB
format is passed to an SMT solver running in a separate
process. If an error is discovered, a diagnostic error trace is
calculated by examining the model returned by the solver.



The implementation of Civl adds two more phases into the
pipeline of the Boogie verifier. Initially, the Civl attributes
are parsed together with the rest of the Boogie program and
the standard Boogie type checker is run. Then, the Civl type
checker validates the Civl attributes and converts them into
internal data structures. Next, the Civl processor compiles all
proof obligations related to concurrency down to sequential
Boogie procedures. Finally, the existing Boogie pipeline for
converting procedures into verification conditions takes over.
Civl type checker. The type checker has three main parts.

First, a layer analysis [8] checks that the layer annotations
are consistent. This analysis ensures that all program layers en-
coded by the input layered program are well-formed, e.g., that
variables accessed and procedures/actions called on some layer
actually exist on that layer. It also ensures the soundness of our
refinement check. For example, in Figure 4 we could not refine
Client at layer 1, because its callee Acquire first needs
to be converted to the action AcquireSpec, which happens
from layer 1 to layer 2. For sound variable introduction, only
introduction actions and invariants are allowed to access global
variables at their introduction layer. For example, at layer 1
only set_l and LockInv refer to l, whereas AcquireSpec

only refers to it at layer 2.
Second, a yield sufficiency analysis [7] checks, for each

layer separately, that it is safe to consider context switches
only at yield points. This check is implemented by computing
a simulation relation [16] between a labeled control-flow graph
and a specification automaton that encodes all sequences of
mover types allowed by Lipton’s reduction theorem [6]. The
specification automaton is shown in panel ① of Figure 8.
Panel ② shows the labeled graph for procedure Acqurie at
layer 1. Node n0 represents the loop head. Since the loop
is yielding, the edge to the loop condition n1 is labeled Y.
At n1 we either exit the loop and thus the entire procedure on
the private edge to n3, or we execute the non-mover CAS_b
on the edge to n2 labeled N. At n2, corresponding to the
if condition, we either execute the introduction action set_l

and break from the loop, or we loop back to the loop head n0,
both of which are private edges. Panels ③ and ④ show that
the calls to the yielding procedures Acquire and Release

are labeled with Y at layer 1 but with the mover type of their
respective refined atomic action at layer 2. For simplicity, Civl
does not allow a yield-to-yield fragment that starts within a
loop to wrap around the loop head, and thus checks that every
loop that contains a Y edge is a yielding loop.

Third, a linear flow analysis [14] computes the available
linear variables at each control location of a procedure, and
ensures that calls to procedures, atomic actions, and yield
invariants satisfy their linear interfaces. The following code
snippet refers to Figure 6.
// i available, p unavailable
call p := EnterBarrier(i);
// i unavailable, p available
call ThreadInv(p, i);
// i unavailable, p available
call ExitBarrier(p, i);
// i available, p unavailable

N: non-mover R: right mover L: left mover
B: both mover Y: yield P: private

RM

LM

① R, B, Y, P

N,
R, L, B,

Y, P

L, B, Y, P

Y

n0

n1 n2

n3

②

Y

N

PP

P

m0

...

m1

③

Y

Y

m0

...

m1

④

R

L

Fig. 8. Labeled control-flow graphs for yield sufficiency analysis of Figure 4.
① Specification automation. ② Acquire at layer 1. ③ Client at layer 1.
④ Client at layer 2.

EnterBarrier requires i to be available and consumes it,
making p available in return. The unavailable i can be used
in places where it is not required to be linear, in particular the
calls to ThreadInv and ExitBarrier. After ExitBarrier
which consumes p, variable i is available again.
Civl processor. To target Boogie’s verification-condition gen-
erator, Civl eliminates layers, concurrency, and linearity from
the input layered concurrent program by creating a collection
of sequential checker procedures. There are two advantages
to this approach. First, modular decomposition into checker
procedures improves scalability by creating small verification
problems. Second, verification failures in checker procedures
are processed to create targeted error messages. In the follow-
ing we explain the categories of checker procedures Civl gen-
erates. We do not have the space to present detailed encodings;
we suggest that interested readers use the command-line flag
-civlDesugaredFile to inspect the plain Boogie program
generated by the Civl processor.

A common functionality required by multiple checker pro-
cedures is the computation of a logical transition relation from
the code representation of an atomic action. For each code
path, Civl computes a path constraint from its static single
assignment form, and then iteratively eliminates intermediate
copies of variables by finding and inlining definitions. Vari-
ables that cannot be eliminated are existentially quantified. The
transition relation is the disjunction over all path formulas.

Permission redistribution among linear variables occurs
through assignment, parameter passing, and mutation in
atomic actions. The first two sources of redistribution are
tracked by the syntactic flow analysis in the Civl type checker.
For the third source, a checker procedure for each atomic
action ensures that no permission duplication occurs due
to its execution. This semantic check involves user-supplied
collector functions. For example, the checker procedure for
ExitBarrier from Figure 6 validates the postcondition

TidSetCol(barrier) ⊎ TidCol(i) ⊆
TidSetCol(old(barrier)) ⊎ PermCol(old(p)),

stating that the permissions flowing into the action through
barrier and p must be a subset of the permissions flowing
out through barrier and i. The resulting non-duplication
guarantee among linear variables is injected into all the
following checks as a free assumption.



procedure CommutativityChecker(tid_1: Tid, tid_2: Tid)
requires tid_1 != tid_2; // derived from linearity
requires l == Some(tid_2); // gate of ReleaseSpec
modifies b, l;
{
call AcquireSpec(tid_1); // inlined
call ReleaseSpec(tid_2); // inlined
// trans. rel. of ReleaseSpec(tid_2); AcquireSpec(tid_1)
assert l == Some(tid_1);

}

Fig. 9. Commutativity checker for AcquireSpec and ReleaseSpec.

The mover type of each atomic action is verified by pair-
wise checks against every atomic action with an overlapping
layer range. Each such check is encoded by multiple checker
procedures to account for commutativity of both failing and
successful behaviors. For example, the commutativity check
between AcquireSpec and ReleaseSpec is shown in Fig-
ure 9. Recall that this check succeeds because the first call
blocks due to the constraint we get from linearity. In addition,
each left mover and introduction action is separately checked
to have a failing or successful behavior from each initial state.

Invariants are verified separately for each layer n, resulting
in a checker procedure for each yielding procedure with
disappearing layer at least n. Civl constructs the checker
procedure from the code of the yielding procedure as follows.
First, calls to invariants and introduction actions at layers
other than n are dropped and calls to yielding procedures with
disappearing layers lower than n are rewritten to calls of their
respective refined actions. Next, asynchronous and parallel
calls (of which ordinary calls are a special case) are translated.
An asynchronous call to a yielding procedure is translated
into an assertion of the precondition of the procedure. An
asynchronous call to an action is either synchronized or
converted into a pending async [12]. A parallel call may
contain arms that are actions, yield invariants, or yielding
procedures. Each such call is rewritten into a sequence
comprising calls to actions and parallel calls whose arms are
either yield invariants or yielding procedures. For example,
par A | P | I | B | C | Q | D with actions A, B, C and
D, procedures P and Q, and invariant I , is rewritten to
call A; par P | I; call B; call C; par Q; call D.
All calls to atomic actions are inlined. Any parallel call
remaining at this point is a yield where interference is
possible. Next, each yield is instrumented to record a
snapshot of the global variables immediately after the
yield. This snapshot is used to assert the preservation of
all invariants in the program at the end of a yield-to-yield
fragment. Finally, each parallel call (with arms that are
yielding procedures or yield invariants) comprising a yield
is itself desugared as follows: (1) assert preconditions of
yielding procedures and yield invariants, (2) havoc all global
variables, (3) assume postconditions of yielding procedures
and yield invariants. The soundness of this translation of
concurrent code to sequential code is ensured by the yield
sufficiency analysis of the Civl type checker. A side condition
for asynchronous calls forbids global state updates between an
asynchronous call to a yielding procedure and the next yield

point. Additionally, there are restrictions on the sequence of
arms in a parallel call. For example, any left mover must
occur before any right mover, and there cannot be both a
yielding procedure and a non-mover in the sequence.

At the disappearing layer n of every yielding procedure, a
checker procedure verifies refinement of the specified atomic
action by tracking two local Boolean variables, pc and ok,
each initialized to false. The variable pc is set to true as
soon as a yield-to-yield fragment modifies any layer-(n + 1)
state; before any such modification it is asserted that pc is
false. The variable ok is set to true as soon as a yield-to-
yield fragment modifies the layer-(n+1) state according to a
transition admitted by the refined action; ok is asserted to be
true when the procedure returns. Overall, we check that layer-
(n+1) state is modified at most once, and that a behavior of
the refined action occurs at least once.

Each invocation of the inductive sequentialization [13] rule
results in a collection of checker procedures, one each for
the base and conclusion case and one for the inductive step
corresponding to each eliminated pending async.

V. EXPERIENCE

Civl has been used in many efforts to develop verified
concurrent systems, both by the authors of Civl and by other
researchers. These efforts include a concurrent garbage col-
lector [9], a Paxos implementation [13], and implementations
of concurrent data structures: the FastTrack data-race detec-
tor [17], Chase-Lev deque [18], and Java weakly-consistent
objects [19]. Civl has also been used to prototype techniques
for verification under TSO semantics [20]. Civl is fast enough
to be used for interactive development. Even on our large
benchmarks, verification time is a few seconds.

Our experience suggests that Civl’s specification
mechanisms—layering, commutativity, yield invariants—
are natural for users. These features aid discovery of provable
implementations by encouraging the user to think about
different layers of abstraction, the primitives for each layer,
and suitable organization of the reasoning technique at each
layer. In addition, layers enable partitioning of work among
multiple developers each working on the proof of a particular
layer with agreed-upon interfaces between layers.

We present more details about two major case studies to
provide anecdotal evidence for the improvements in develop-
ing verified concurrent systems enabled by Civl.
Concurrent Garbage Collector. An author of this paper
together with other researchers used Civl to develop a verified
concurrent garbage collector and object allocator that improves
upon the mark-and-sweep garbage collector by Dijkstra el
al. [21] in two ways. First, the new collector supports more
than one mutator running in parallel with the collector. Second,
it requires a write-barrier only on updates of heap pointers but
not on root modifications. The Civl implementation is realistic,
given in terms of individual CPU operations. The refined
specification comprises high-level atomic actions for object
allocation and access, that provide the illusion of unbounded
memory in which individual objects are not reused.



The proof is done via a sequence of 6 program transfor-
mations connecting 7 program layers. Layer 0 is described
in terms of individual atomic CPU operations. Layer 0 → 1
introduces locks and atomic actions for read/write accesses.
Layer 1 → 2 uses the locks and protected accesses to construct
higher-level atomic operations that are used in the barrier
synchronization algorithm for root scanning and in the mark-
sweep algorithm. The collector operates in three phases—
idle, mark, and sweep. Layer 2 → 3 reasons about the
coordination between the collector and the mutators to make
phase changes safely. The mark algorithm performs a depth-
first search of the heap starting from the roots. The stack in
this search comprises “gray” objects. Layer 3 → 4 changes the
representation of the gray objects to a set. Layer 4 → 5 reasons
about the root scanning algorithm that internally uses barrier
synchronization to create an atomic action that scans all roots
in one step. Reasoning about the write barrier also happens
during this transformation. Layer 5 → 6 reasons about the
mark-sweep algorithm using the atomic actions for scanning
roots, maintaining the set of gray objects, and changing object
colors. The garbage collector is hidden entirely, leaving the
client with atomic actions for allocating objects, reading and
writing object fields, and checking object equality.

This proof was constructed and reported in 2015 [9]. Since
then, Civl has been rewritten but the proof has been maintained
and improved. The current artifact is 2031 LOC and verifies
in 25s on a standard Mac. The biggest improvement happened
with the introduction of yield invariants [14] which reduced
the verification time by a factor of 10.

Paxos. The Paxos protocol [22] establishes consensus among
a set of unreliable nodes in an asynchronous network without
a central coordinator. This protocol lies at the core of any
system with replicated state. It is difficult to both understand
and implement. The authors of this paper together with other
researchers constructed a verified implementation [13] of
single-decree Paxos, which establishes consensus on a single
value. The verified implementation only uses primitive atomic
actions, like reading or writing a single memory address, and
sending or receiving a single message.

The proof is constructed via a sequence of 2 program
transformations done over 3 layers. Layer 0 implements event
handlers using primitive atomic actions for sending and re-
ceiving network messages, and for updates to the local state
and decision variable at each Paxos node. The transformation
from layer 0 to layer 1 converts event handlers to atomic
actions at the granularity typically used to describe protocols
in papers. At the same time, this transformation changes the
state representation to make it easier to apply the next trans-
formation. The invariant justifying this transformation simply
connects the two state representations. The transformation
from layer 1 to layer 2 uses inductive sequentialization [13]
to create a single atomic action where consensus is reached
in one step by nondeterministically setting decisions at each
node consistently. The invariant justifying this transformation
captures the intuition of the protocol. It has 4 conjuncts and

is considerably simpler than the invariants in other published
proofs of the Paxos protocol. For example, the proof [23] using
Ivy has 5 other supporting invariants in addition to the 4 used
in the Civl proof. The current artifact for the Civl proof is
1116 LOC and verifies in 7s on a standard Mac.

VI. RELATED WORK

In this section we compare Civl to other reusable tools that
have support for concurrency.

TLA+ [24] and Event-B [25] are two classic tools for
refinement reasoning over transition systems. Ivy [26] verifies
transition systems using a restricted modeling and specification
language (notably without functions and arbitrary quantifica-
tion) that makes verification conditions decidable. While Ivy
requires manual effort to encode distributed systems concepts
in this restricted language, Civl requires manual effort to
automate quantifier reasoning. Ivy also has a synchronous, re-
active programming language from which it can extract asyn-
chronous, distributed implementations [27]. This programming
model, which cannot express fine-grained concurrency, can
be encoded in Civl by threading a linear parameter through
atomic actions and procedures. Ivy provides liveness reasoning
and information hiding via modules.

Iris [28] is a Coq-based formalization of a program logic
suitable for reasoning about fine-grained concurrent programs
with higher-order ghost state. The focus in Iris is to clarify and
simplify concurrent separation logics around a few primitive
concepts in order to provide a suitable foundation for develop-
ing reasoning mechanisms for concurrent programs. Compared
to Iris, Civl is less flexible but provides more automation
on a programming notation that supports standard models of
concurrent programming. ReLoC [29] is a logic built on top of
Iris for interactively proving contextual refinement judgments.

Chalice [30] verifies monitor invariants, in addition to ab-
sence of data races and deadlocks, on a small Java-like concur-
rent programming language. VeriFast [31] supports separation
logic specifications, resource invariants, and higher-order ghost
state on concurrent C and Java programs. Prusti [32] uses the
guarantees of the Rust type system to simplify the manual
annotation effort. VerCors [33] builds on separation logic
specifications and provides verification features for several
concurrent programming idioms, e.g., based on histories and
process algebra. VCC [34] is a verifier for concurrent C
programs. VCC allows the programmer to construct a cus-
tom verification methodology via extensive support for the
introduction of ghost types and values. Noninterference is
accomplished via a network of type-level global invariants
which together must satisfy certain stability and admissibility
conditions. Similar to Civl, these tools use SMT solvers as the
reasoning engine, exploit programmer interaction, and support
modular reasoning. Civl provides features not present in these
tools such as layered refinement and yield invariants.

Anchor [35], a successor to Calvin-R [36], is a lightweight
verifier for a small Java-like programming language. An-
chor allows the programmer to compactly specify conditional
mover types for read and write accesses of shared object fields.



It is less modular than Civl and other tools discussed here;
inlining is used extensively to deal with procedure calls.

Armada [37] is a language and verifier that implements
layers, mover types, and explicit noninterference reasoning.
Armada is inspired by Civl but also supports weak memory
and extensibility via new simplification tactics. While Civl
represents all program layers in a single layered concurrent
program, Armada connects explicitly written programs using
proof scripts that invoke mechanized theorems.

VII. CONCLUSION

The Civl static verifier aids the development of verified
concurrent systems through language-integrated proof struc-
turing mechanisms, an array of program-simplifying proof
tactics, and modular and automatable verification conditions.
The modeling features provided in Civl are general; they
can be specialized to many different domains by building
custom linguistic support and automation. For example, it is
possible to use Civl as the verification backend for domain-
specific languages suitable for developing implementations
of distributed protocols, concurrent data structures, or even
system-level hardware implementations. Overall, Civl opens
many new opportunities in development of programming tools
for concurrent systems.

Civl’s capabilities to generate verification conditions for
checking commutativity, refinement, and noninterference can
be leveraged individually by a verifier. It is also conceivable
to design a programming language that supports layering
and atomic actions natively, and uses Civl as a backend for
verification. This language would generate executable code
from the lowest-layer program which invokes atomic actions
whose implementation is provided by the language runtime.

Our experience suggests that progress on the following im-
portant challenges should increase the applicability and usabil-
ity of Civl. First, Civl’s verification conditions have quantifiers
which can results in unpredictable verification times. Domain-
specific techniques for automatic quantifier instantiation or
language mechanisms for conveniently specifying instances
would help. Second, Civl supports linear maps [38] for rea-
soning about disjoint but flat memory. Extension to support
reasoning about nested linear maps would make it easier to
encode standard heap programming models. Third, layered
programs in Civl are challenging to comprehend, edit, and
refactor; tools to help with these tasks would be helpful. A
module system for factoring out libraries and their layered
proofs would aid the development of large verified systems.
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